TypeForge: Synthesizing and Selecting Best-Fit Composite Data Types
for Stripped Binaries

Yanzhong Wang! 2, Ruigang Liang!?*, Yilin Li"2, Peiwei Hu''?, Kai Chen?*, and Bolun Zhang'?
LState Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering, CAS, China
2School of Cyber Security, University of Chinese Academy of Sciences, China
{wangyanzhong, liangruigang, liyilin2023, hupeiwei, chenkai, zhangbolun} @iie.ac.cn

Abstract—Static binary analysis is a widely used approach for
ensuring the security of closed-source software. However, the
absence of type information in stripped binaries, particularly
for composite data types, poses significant challenges for both
static analyzers and reverse engineering experts in achieving
efficient and accurate analysis. Existing methods often struggle
with inaccuracies and scalability limitations when dealing
with such data types. To address these problems, we present
TYPEFORGE, a novel approach inspired by the workflow of
reverse engineering experts, which uses a two-stage synthesis-
selection strategy to automate the recovery of composite data
types from stripped binaries. We design a new graph structure,
the Type Flow Graph (TFG) to represent type information
within stripped binaries. In the first stage, TFG-based Type
Synthesis focuses on efficiently and accurately building con-
straints and synthesizing possible composite type declarations
from the stripped binaries. In the second stage, we propose
an LLM-assisted double-elimination framework to select the
best-fit type declaration from the candidates by assessing the
readability of the decompiled code. Our comparison with state-
of-the-art approaches demonstrates that TYPEFORGE achieves
F1 scores of 81.7% and 88.2% in Composite Data Type
Identification and Layout Recovery, respectively, substantially
outperforming existing methods. Additionally, TYPEFORGE
achieves an F1 score of 72.1% in Relationship Recovery, a
particularly challenging task for previous approaches. Fur-
thermore, TYPEFORGE has significantly lower time overhead,
requiring only about 3.8% of the time taken by OSPREY,
the best-performing existing approach, making it a promising
solution for various real-world reverse engineering tasks.

1. Introduction

Conducting security analysis on closed-source software
is widely recognized as a challenging task. One key reason
is that stripped binaries in closed-source software typically
lack variable and type information, which is lost during com-
pilation. Accurately recovering this missing type informa-
tion is critical for various downstream tasks, including vul-
nerability detection [1], [2], [3], [4], [5], decompilation [6],
[71, [8], [9], and malware analysis [10], [11], [12]. For

*Corresponding Author.

instance, static analysis tools can more efficiently identify
vulnerabilities by locating read and write accesses to specific
data structure members, while decompilers can use recov-
ered type information to enhance code readability. Currently,
widely used binary analysis platforms like Ghidra [13] and
IDA Pro [14] can recover primitive data types, such as
int and long, with reasonable accuracy, but they encounter
significant difficulties in recovering composite data types.
These mainstream platforms still rely heavily on manual
efforts from users to recover composite data types, resulting
in considerable time consumption and a strong dependence
on expert experience. Our statistics show that accesses to
composite data type variables and their fields in binaries
are nearly 1.8 times more frequent than accesses to primitive
variables, and this ratio increases further in more complex
software. Additionally, our statistics indicate that the state-
of-the-art binary analysis platform, IDA Pro [14], can accu-
rately recover only 6% of composite data types, only limited
to library-defined types, while user-defined composite data
types remain unrecoverable.

Several recent studies have attempted to address the
challenge of recovering composite data types in stripped
binaries. TIE [15] and OSPREY [16] utilize whole-program
memory dependency analysis, such as Value-Set Analysis
(VSA) [17], along with a series of heuristic rules to infer
composite data types from stripped binaries. DIRTY [9]
leverages a transformer model to predict known types from a
training set, but it has limitations in recovering user-defined
composite data types because DIRTY ignores data flow re-
lationships between variables, resulting in inconsistent type
predictions for variables that should share the same type.
TYGR [18] combines intra-procedural analysis with graph
neural networks to predict variable types within functions,
but it fails to recover the member layout of composite types.
ReSym [19] leverages large language models and inter-
procedural analysis, and while it can recover composite type
layouts to some extent, its accuracy remains relatively low
for practical applications.

In summary, existing efforts suffer from the following
limitations. L1: Difficulty in accurately and efficiently recov-
ering the full declaration of composite data types. Existing
methods either prioritize efficiency, resulting in numerous
false positives that lead to both missing legitimate members
and introducing spurious members within composite data

types [9], [19], or trade time for accuracy, making them
difficult to scale to more complex and larger binary pro-
grams [15], [16]. Furthermore, existing methods often strug-
gle to reconstruct relationships between composite types,
such as structure pointer references and structure nesting.
These relationships are crucial for downstream security anal-
ysis tasks, for example, a composite type containing two
pointer-type members that reference itself would signal to
reverse engineers that it likely represents a node in a doubly
linked list or tree structure. L2: Difficulty in effectively
handling ambiguities while recovering composite data types.
Most efforts [16], [17], [19] rely on memory access patterns
collected from stripped binaries to recover composite data
types. However, different composite data types often exhibit
the same memory access patterns in stripped binaries. For
example, access pattern dereference(base + offset) could
originate from either structure member accesses or array
element accesses in the source code, making it difficult to
accurately determine their actual types.

By observing how human reverse engineering experts
manually recover composite data types, we find that they
typically begin by synthesizing an initial composite data
type declaration based on partial type hints (such as memory
access patterns) in binary. They then continuously analyze
the binary, iteratively refining and modifying this initial
declaration. When facing uncertainty, they consider multiple
potential alternatives as candidates and ultimately use their
expertise to select the best-fit composite type declarations.
Inspired by the above observation, we realize that replicating
the workflow of reverse engineering experts, which involves
(1) continuously analyzing the binary and synthesizing po-
tential composite data type declarations as candidates and
(2) selecting the best-fit type declaration from these candi-
dates, can effectively overcome the limitations of accuracy
and ambiguity in existing methods. However, implementing
such an automated technique presents some challenges.
Challenges. C1: Existing techniques struggle to construct
constraints for composite data types efficiently and accu-
rately, resulting in an extensive search space when syn-
thesizing declarations. Due to the inherent complexity of
internal member layouts and relationships in composite
data types, accurate constraints are always necessary when
synthesizing possible type declarations; without them, an
enormous search space results. However, as previously men-
tioned, existing data flow analysis techniques used to con-
struct composite type constraints for stripped binaries cannot
effectively balance accuracy and scalability, limiting their
practical use in real-world reverse engineering scenarios.
C2: Difficulty in selecting the best-fit composite data type
declaration from candidates. Reverse engineering experts
rely heavily on domain-specific experience and a deep un-
derstanding of the target binary to select the final type
declaration from the candidates, often consuming significant
time and effort. However, translating this expert experience
into an automated process is challenging, as the complexity
and diversity of stripped binaries make it difficult to quantify
this expertise into corresponding algorithms.

Our Approach. In this paper, we introduce TYPEFORGE,

a novel automated approach that employs a two-stage
synthesis-selection strategy to emulate the workflow of a
reverse engineering expert and overcome the aforementioned
challenges. To address C1, we propose TFG-based Type
Synthesis for accurately and efficiently synthesizing poten-
tial composite data type declarations from stripped binaries.
Specifically, we first design a novel data flow abstraction
called the Type Flow Graph (TFG) based on variables and
primitive types inferred by existing tools. Compared to
previous work, TFG not only efficiently gathers type hints
representing both the internal layout and the relationships
between composite data types, but also supports constructing
whole-program TFG through parallelized analysis, minimiz-
ing false positives while maintaining low time overhead.
Based on TFG, we propose a Conflict-Aware Type Hint
Propagation algorithm to process the whole-program TFG
for constructing accurate composite type constraints. Unlike
the inter-procedural analysis used in existing methods [16],
[19], Conflict-Aware Type Hint Propagation effectively pre-
vents erroneous propagation of type hints through conflict
detection, significantly reducing false positives while main-
taining low time overhead. Finally, informed by the factors
contributing to ambiguity in composite data type recovery,
we design an Adaptive Sliding Window algorithm that syn-
thesizes all possible declarations based on the constructed
type constraints.

To address C2, we observe that the higher the ac-
curacy of the composite data types recovered by the ex-
pert, the more precise the syntax and semantics of the
decompiled code, significantly improving its readability.
Therefore, rather than designing a specific algorithm, we
propose Readability-Guided Selection, an LLM-assisted
double-elimination [20] mechanism to select the best-fit
composite data type declaration from the candidates syn-
thesized in stage one. Specifically, we first provide the
candidate type declarations to the decompiler via the re-
type interface!, generating different variants of decompiled
code. Next, these different variants of decompiled code are
subjected to multiple rounds of pairwise comparison, with
the LLM-assisted mechanism serving as the judge, assessing
their readability and ranking them accordingly. Finally, this
mechanism selects the composite data type declaration that
produces the most readable decompiled code variant.

We evaluate TyPEFORGE by comparing it with state-
of-the-art approaches, and our results demonstrate that
TypeFORGE achieves high F1 Scores of 81.7% and 88.2%
in Composite Data Type Identification and Layout Recovery,
respectively, superior to these existing approaches. Notably,
TypEFORGE can recover relationships between composite
data types with an F1 Score of 72.1%, which most ex-
isting approaches cannot handle. Additionally, TyPEFORGE
achieves a significantly lower time overhead, requiring only
about 3.8% of the time taken by the best-performing existing
approach, OSPREY, demonstrating that it can scale to larger

1. Mainstream decompilers (e.g., IDA Pro, Ghidra, Binary Ninja) allow
users to manually create and specify variable types through the retype
interface, helping to produce clearer and more accurate decompiled code.

binaries with acceptable time consumption.
Contribution. In summary, our work makes the following
contributions:

« We propose a two-stage synthesis-selection approach
to recover composite data types from stripped binaries,
emulating the workflow of reverse engineering experts
and addressing challenges of accuracy and ambiguity.

e We propose TFG-based Type Synthesis, an accurate and
efficient technique for synthesizing possible composite
data type declarations from stripped binaries. Addition-
ally, we introduce an LL.M-assisted double-elimination
mechanism to assess and rank the readability of de-
compiled code.

e« We implement TypEForRGE with over 12,000 lines
of code, and our evaluation on a real-world dataset
demonstrates that TYPEFORGE outperforms state-of-the-
art approaches in both accuracy and efficiency. We
release our research artifacts? to facilitate future com-
parisons and advancements in this domain.

2. Background and Motivation

2.1. Background

Binary Type Inference Binary type inference is the pro-
cess of reconstructing source-level type information from
memory locations and registers in stripped binaries, which
is essential for downstream security analysis. Numerous
existing tools and research efforts focus on recovering
primitive types, employing either intra-procedural value-set
analysis [13], [14], [15] or Al-based methods [9], [18] with
considerable success. However, recovering composite data
types remains a significant challenge. Composite data types
include structures, unions, and pointers to these types. In
real-world scenarios, these composite data types are often
combined through various relationships, such as pointer
references to other structures, nested structures, and arrays
of structures. Figure 1 shows an example of composite data
types from a real-world project, with a simplified declaration
for clarity. The structure buffer contains four members: id,
meta, chunks, and state. Specifically, id is a member with
the primitive type uint; meta is a pointer to the buf_meta
structure; chunks is an array of nested buf_chunk structure;
state is a union containing a short type member and an
int type member. Consequently, recovering composite data
types requires not only reconstructing the layout of structure
members but also identifying the pointer references (i) and
nested relationships (ii) between structures, as well as the
unions (iii) composed of different types. Unlike primitive
types, recovering composite data types typically requires
inter-procedural analysis to collect type hints from the whole
program, which presents greater challenges. Although ex-
isting studies [16], [19] attempt to recover composite data
types, they are hindered by their data-flow abstraction and
inter-procedural analysis techniques, resulting in their ability
only to recover partial information about structure member

2. Available at https://github.com/noobone123/TypeForge

struct buffer { _.-====1-3| struct buf_meta {
- .
uint id; L @ uint created;
. . A
struct buf_meta* meta; uint modified;
struct buf_chunk chunks[2]; };
(iii) union { N

uint8_t flag;
int error_code;
} state;

s }s

\,
(ﬁ;\~_-—» struct buf_chunk {
char* data;
uint size;

(i) structure pointer
reference

(ii) structure nesting (iii) union

Figure 1: Declaration of a user-defined structure.

void FUN_00133d4b (a) void FUN_00133d4b (b)
(undefined8 param_1) (undefined8 param_1)

{ {
struct_1 local_78;
char* local_68;
size_t local_60;
undefined* local_58;
undefined8 local_50;
undefined* local_48;
undefined8 local_40;
undefined* local_38;

struct_2 local_78 [5];
undefined local 28 [32];

local_78[0].field_oxe
local_78[0].field_ox8
local_78[1].field_oxeo
local 78[1].field_ox8 =
strlen(param_2);

(s
1
param_1;

undefined8 local_30; local_78[2].field_ox0 = ".";
undefined local_28 [32];
return;
local 78 = &DAT_00162a53; }
local_70 = 1;
local_68 = param_1;
local_60.field_0x0 =
strlen(param_2);
local_60.field_0x8 =
&DAT_00162a57;
return;
}
struct struct_1 { (i) struct struct_2 { (ﬁ)
void* field_ox0; char* field_ox0;
undefined8 field_0x8; size_t field_ox8;
} }

Figure 2: Motivating example that inspired the design of
TypeEFoRGE. (a) shows the decompiled code after retyping
local_78 as struct_1 (i), while (b) shows it retyped as an
array of struct_2 (ii) in the same function.

offsets and sizes, and struggle to balance efficiency with
accuracy, limiting their practical application in real-world
scenarios.

Readability assessment of decompiled code. Due to the
loss of source-level symbols during compilation, there is
no standard reference for assessing the readability of de-
compiled code. Existing code readability metrics focus on
specific syntactic characteristics. For example, the McCabe
Cyclomatic Complexity [21] used by revng-c [22] mainly
evaluates control flow complexity. Although some stud-
ies [23] incorporate various syntactic features into readabil-
ity metrics, they still fail to account for code semantics. For
instance, an expression like dereference(base + offset)
within a loop often indicates array access rather than struc-
ture member access. Thus, decompiled code is more read-
able when this variable is retyped as an array rather than
a structure. Readability assessment methods that do not
capture such semantic differences are neither comprehensive
nor objective.

2.2. Motivating Example

Figure 2 is a motivating example that inspired the design
of TypEFoRGE. In Figure 2, (a) and (b) are different variants
of the decompiled code for the function FUN_0@133d4b, (i)
and (ii) represent potential composite data type declarations
for local_78 as considered by experts during the reverse
engineering process. The only difference is that in (a), the
variable local_78 is retyped as struct_1 (i), while in (b), it
is retyped as an array of struct_2 (ii). To select the best-fit
type between them, we assess the readability of the decom-
piled code generated after retyping with each declaration. It
is evident that (b) has better readability compared to (a), (b)
significantly reduces the number of variables (highlighted in
green) and organizes the code more logically by structuring
related data into an array of structures (highlighted in blue),
which more intuitively shows the sequence and manipulation
of related data.

3. Approach

3.1. Overview

Figure 3 illustrates the workflow of TypEFORGE, where
the input is a stripped binary, the output is recovered com-
posite data type declarations, including the layout, rela-
tionships, and related variables. TYPEFORGE works in two
stages: Stagel, TFG-based Type Synthesis (Section 3.2),
which constructs type constraints through TFG and synthe-
sizes possible composite data type declarations as candi-
dates, while Stage2, Readability-Guided Selection (Section
3.3.2), selects the best-fit declaration from the candidates.

In Stage 1, TYPEFORGE leverages variables and primitive
types inferred by the decompiler to construct a whole-
program Type Flow Graph (TFG), representing potential
type relationships throughout the entire program (Sec-
tion 3.2.1). Subsequently, TYPEFORGE employs Conflict-
Aware Type Hint Propagation on the whole-program TFG to
efficiently construct accurate constraints for composite data
types (Section 3.2.2). Finally, TyPEFORGE uses Adaptive
Sliding Window algorithm to synthesize possible composite
data type declarations based on these constraints, effectively
addressing inherent ambiguity (Section 3.2.3).

In Stage 2, TypEFORGE submits type declarations to
the decompiler’s retype interface to obtain variants of the
decompiled code and constructs a mapping from each de-
compiled code variant to its type declaration (Section 3.3.1).
Then, TYPEFORGE uses an LLM-assisted double-elimination
method to select the variant with the highest readability,
recognizing the corresponding type declaration as the final
best-fit composite data type declaration (Section 3.3.2).

Example. Figure 4 shows a concrete example of
how TyYPEFORGE recovers a structure from an open-source
project. TyPEFORGE takes the stripped binary as input and
first builds a whole-program TFG. Then, Conflict-Aware
Type Hint Propagation is applied to the TFG to con-
struct type constraints, as shown in Constraint_74 (I).
Constraint_74 includes the offsets and sizes of structure

TyYPEFORGE
Building Conflict-Aware 2 Type Declaration
TFG Type Hint Propagation | (/" Synthesis
Stripped Composite
Bin’::‘y Type Flow Data Type
Graph Constraints

Stagel: TFG-based Type Synthesis

LLM-assisted I 1
double-elimination ’: I Y
. il —
Best-Fit -
Composite Data Types Code-Type
Declaration Map

Stage2: Readability-Guided Selection

Figure 3: Workflow of TYPEFORGE.

members, pointer relationships between types, and associ-
ated variables (e.g., param_1 in FUN_0012be40 and param_2
in FUN_0@12ff63, both inferred by the decompiler). Next,
TypeForGE applies Adaptive Sliding Window algorithm to
synthesize possible composite data type declarations based
on Constraint_74, which are then added to the Type Decla-
ration Pool (IT). struct_74_a and struct_74_b are examples
of synthesized structure declarations, where struct_74_b
merges certain members into a nested structure array, while
struct_74_a does not. Subsequently, TYPEFORGE uses the
decompiler’s retype interface to collect different decompiled
code variants, forming a Code-Type Map (III). In this
map, code snippets (a) and (b) correspond to the structure
struct_74_a and struct_74_b applied to the variable param_1
in function FUN_0@12be40, respectively. Finally, TyPEFORGE
employs an LLM-assisted double-elimination mechanism to
judge the readability of decompiled code pairs within the
Code-Type Map, as illustrated in (IV). In the figure, the
mechanism determines that decompiled code (b) is more
readable than decompiled code (a), making struct_74_b
the preferred structure declaration. Through this process,
TypeEFORGE selects the best-fit composite data type declara-
tion. Below, we present the details of both stages.

3.2. TFG-based Type Synthesis

3.2.1. Building TFG. Existing work typically relies on
heavy inter-procedural value-set analysis [17] or binary de-
pendency analysis [24] to collect composite type hints from
the whole program. However, these efforts are usually flow-
sensitive and context-sensitive, often resulting in significant
time overhead. Furthermore, the data flow abstractions these
approaches employ frequently generate numerous false pos-
itives in complex inter-procedural analysis. To address these
limitations, we introduce a novel data flow abstraction, the
Type Flow Graph (TFG), to efficiently and accurately collect
type hints for composite data types. The design of TFG is
based on the following three key observations.

Observations. O1: Member accesses of composite types
in decompiled code are typically represented as expres-
sions like varey; = dereference(varyign: + of fset),

Constraint 0 Type Declaration Pool
Constraint_74
0x0: 4 byte struct_74_a { struct_74_b {
""" > - ox8: 8 byt trRef t h > dword field_ox@; int field_exe;
Stripped LIt yte (ptrRe o char) char* ptr_field_ox8; struct_83 {
X 0x10: 4 byte dword field_@x10; char* ptr_field_0x@;
Binary Type Flow 0x18: 8 byte (ptrRef to char) char* ptr_field_18; dword field_ox8;
Graph 0x20: 4 byte dword field_ox20; } [2] nest_field_ox8;
}
struct_74 b { Associated variables:
1:t fteég—‘zxei FUN_0@12bed0: param_1; FUN_@@12ff63: param 2 | | eeeoeee
struct_ x .
char* ptr_field_oxe; \ J
dword field_ox8; . v
} [2] nest_field_oxs; . S Retype Interface e
} . Best-Fit - (Variable, Type Declaration) -
Composite Data Type 8
1
__________________ i
@ /‘ e L v Code-Type Map @
,/’ ~~‘\
L void FUN_0012be40o

LLM-assisted <-----_. i

e void FUN_0012bedo ‘o
(struct_74_b* param 1) ____-==""

double-elimination

\
\
\
N\

char *local_10;
int local_18;
void *local_20;
int local_28;

\
Better Fit

Decompiled
Code
Readability:

struct_83[2] local_10;

int local_30;

local_30 = param_1->field_ox0;
memcpy(local_16, param_1->nest_field_ox8,

00| |

struct_74_a

Worse Fit

int local_30; (long)local_30 << 4);
local_30 = param_1->field_ox@; M oo
memcpy(&local_10, ¶m_1->ptr_field_ox8, }
(long)(int)local_30 << 4);
struct_74_a { struct_74_b {
/] ... || 1l ... | |
} }

Figure 4: An example of TYPEFORGE demonstrates the complete process of recovering a complex structure from a stripped

binary.

1 void Fun_62d3(long param_1) { E void Fun_0413

2 /] ... | (long param_1, long param_2) {
3 long local_10; A

4 undefined8* local_18; H long local_30;

5 undefined8 local_50; E long uvar2;

6 long uvar; | // ...

7 /] ... I *(param_1 + 0x4) = 8;

8 Fun_0413(&local 50, param_1); E *(param_2 + 0x30) = local_30;
9 local_10 = param_1; ! *(local_30 + 0x8) = uVar2;

10 local_18 = *(local_10 + @x30); | // ...

11 uvar = *(local_18 + 0x8); V)

12 /...

13 } 1

Figure 5: Simplified code of functions from a real-world

project decompiled by Ghidra.

where variep; and varyign: are variables inferred by the
decompiler, as shown in Figure 5. In such expressions,
varright SErves as a base pointer to a composite type,
of fset indicates the position of a specific member within
that type, and the size of this member corresponds to the
size of var;.s¢. These expressions provide essential type
hints for recovering the layout of composite data types.
02: More critical type hints for recovering relationships
can be collected by further analyzing and combining these
expressions. For example, line 10 of function Fun_02d3 in
Figure 5 reveals that local_10 points to a composite type
that contains a member at offset 9x30 with a size of 0x8,
matching the type of local_18. Line 11 further reveals that
local_18 also points to a composite type with a member
at offset 0x8. The expressions from Lines 10 and 11 can
be combined to form *(x(local_10 + 0x30) + 0x8), reveal-

ing that local_10’s composite type contains a pointer-type
member at offset 0x30 which references another composite
data type with a member at offset 0x8 through a single-level
pointer. Similarly, expressions like (var+of f set) appearing
as arguments at callsites typically indicate that the composite
type corresponding to var contains a nested structure at that
offset. These expressions can also be used to construct type
alias information without performing costly and inaccurate
value-set analysis. Notably, many of these revealing expres-
sions do not appear explicitly in the program statements.
Therefore, we must systematically uncover these implicit
expressions to collect sufficient type hints for constructing
type constraints. O3: Most variables with direct data flow
relationships inferred by the decompiler typically share the
same data type, regardless of differences in function call
contexts, execution paths, or program points. Although type-
casting and unions in programs can violate this observation,
their occurrence is relatively rare. Therefore, by effectively
identifying these exceptional cases (Section 3.2.2), we can
avoid costly flow-sensitive and context-sensitive analyses,
significantly reducing analysis time overhead.

Based on these observations, we designed TFG and
associated algorithms to significantly enhance the efficiency
and accuracy of composite type synthesis. Next, we provide
the complete definition of TFG, followed by algorithms for
building the whole-program TFG.

Definition 1. Let TFG be a directed graph represented as
a tuple G = (N, E, L), where:
e N is a set of Nodes. Eachn € N corresponds to a Nested

Member Access Expression (NMAE, formally defined later)
generated during intra-procedural analysis.

e F C N x N x T is a set of directed edges, where
T = {dataflow,member,typealias} denotes the edge
types. For any edge (n;,n;,t) € E, the type t indicates a
specific relationship between node n; and node n;. Specif-
ically, a dataflow edge represents a direct data flow re-
lationship, such as an assignment or parameter passing
in function calls; a member edge indicates a membership
where the source node represents a composite type and the
target node represents a member of that composite type; and
a typealias edge indicates that two nodes have identical
types, even though there is no explicit data flow relationship
between them.

o L:E — Z>g is a labeling function, defined exclusively
on member edges. For a member edge (n;,n;, member),
the label L(n;,n;) provides a non-negative integer offset,
specifying the position of the member represented by the
target node within the composite data type represented by
the source node.

Table 1 presents the recursive definition of NMAE,
which represents each node within the TFG. In Table 1,
expr represents an NMAE, which can be a variable, a
binary expression combining two expr components, or an
expression formed by applying an unop operation to another
expr. Specifically, binop includes binary operators that may
involve pointer arithmetic, while unop encompasses pointer
dereference and reference operations. NMAEs that include
unop represent data stored at or loaded from the memory
locations denoted by its inner NMAE. Here, var denotes a
constant or a variable inferred by the decompiler, including
local variables on the stack, global variables, heap variables,
and function parameters stored in registers.

TABLE 1: Recursive Definition of NMAE

expr = expr binop expr | unop expr | var

var = DecompiledVar | Constant

DecompiledVar = vgtack | Vgiobal | Vheap | Uparam
binop 1= +, —, X, ...
unop = x, &

It is worth noting that mainstream decompilers [13],
[14], [25] can recover primitive types from source code
with extremely high accuracy, while composite types and
their pointers are frequently misidentified. TFG addresses
this limitation by leveraging decompiler-inferred primitive
types and related expressions to recover composite data
types, thereby ensuring the reliability of the results. Another
key advantage of TFG is that it does not require replacing
the decompiler’s underlying algorithms with other complex
dynamic or static analyses, making it extensible to any
decompiler capable of primitive type inference, significantly
enhancing its practical applicability.

Intra-procedural analysis. Intra-procedural analysis aims
to uncover and collect as many explicit and implicit type
hints as possible within a single function by analyzing
decompiled code. These type hints typically include the

Fun_0413 ox Fun_0413 Fun_0413
& [par‘am 1 _] ----- >[*(param 1+ ox4) |+— |38
SN

Fun_0413 Fun_0413 Fun_0413

[1oca1 30) s (*(local_30 + ex8)

KFS
Fun 02d3 / /
Fun_0413 Fun_0413

*(param 2 + 0x30) [uVarZ

Fun_0413

g*(*(param_z + 0x30) + 0x8) |

param_2

local_1e
ox30"., | Fun_02d3

“ *(local_10 + 0x30)
Fun_02d3 / \
Fun 92d3

local_18
®x8 “ Fun_ 62d3 /
*(local_18 + 0x8) i *(param_ 1 + 0x30)
Fun_02d3 ‘/// ‘/7 QXS\x
Lvar) [Fun_e2d3 / A~ A [Fun_02d3

;*(*(local_le + 0x30) + QXS)E 5*((param 1 + ex30) + BXS)

Figure 6: An example of TFG contains two functions, where
black arrows represent direct data flow relationships, and
yellow dashed arrows represent membership within compos-
ite data types, with the constants on the edges indicating the
members’ position. Green arrows indicate that the connected
NMAE nodes share the same type due to aliasing.

variables associated with composite data types, the offsets
and sizes of members within composite data types, and
other types that may be referenced by pointers or nested
within the structure. Figure 6 shows a TFG constructed
from the two functions shown in Figure 5. Nodes marked in
purple and blue represent the results of the intra-procedural
analysis on functions Fun_0413 and Fun_02d3, respectively
(temporarily ignoring the edges labeled as “Inter”). Tak-
ing the TFG of Fun_02d3 as an example, based on the
statement local_10 = param_1, our analysis can construct
a dataflow edge from node param_1 to node local_1e.
Furthermore, the expression *(local_10 + 0x30) on line 10,
matches the access pattern for structure members; there-
fore, there is a member edge labeled 0x30 from local_10
to *(local_10 + 0x30). Since the value of this member
is assigned to local_18, there is a dataflow edge from
x(local_10 + 0x30) to local_18, implying that the mem-
ber’s type is consistent with that of local_18.

Besides collecting explicit expressions present in pro-
gram statements, TYPEFORGE can also automatically infer
and create new implicit NMAE nodes in the TFG based
on known expressions, as shown in Algorithm 1. Algo-
rithm 1 maintains a mapping from variables to sets of
NMAE nodes (line 3), which represents the collection of
NMAE whose types match that of the variable. It then
iteratively processes each statement in the decompiled code
(line 4). For each statement, the algorithm generates new
NMAEs based on the NMAEs associated with the input
variable and the effect of the statement (line 8), updat-
ing both the expression set for the output variable and
the TFG accordingly (lines 10-11). A noteworthy aspect

Algorithm 1: Intra-procedural analysis for
building TFG
Input: D: Decompiled code of function f
Output: G¢: Type Flow Graph of function f

1 S < EXTRACTSTATEMENTS(D)

2 V <~ EXTRACTINFERREDVARIABLES(D)
3 &+ {v— {NEWEXPR(v)} |v €V}

4 foreach statement s € S do

5 Vin < GETINPUTVARS(S)

6 Vout < GETOUTPUTVAR(S)

7 foreach expression e € E[v;,] do

8 €’ + VISITSTATEMENT (e, $)

9 if ¢/ £ 1 then

10 Evout] + Elvout] U{e'}

1 Gy < UPDATETFG(Gy, € e, s)
12 end

13 end

14 end

15 return G

of the algorithm is that every NMAE associated with the
input variable is used to generate new NMAEs (line 7),
which enables the discovery of additional implicit type
hints. Specifically, our algorithm searches for other known
expressions that share the same type with the input NMAE’s
base and uses them to replace the base, thereby creating new
NMAE nodes. For example, when processing the statement
on line 10 of the function Fun_02d3 in Figure 5, the input
variable local_10 is associated with a NMAE set containing
both local_10 and param_1 due to the assignment at line
9. Consequently, an implicit NMAE *(param_1 + 0x30) is
generated, indicating that the composite type corresponding
to param_1 has a member at offset ox3¢ (these implicit
nodes are represented with dashed boundaries in Figure 6).
Furthermore, these generated NMAE can also be used to
build alias relationships. For instance, since param_1 and
local_10 have a dataflow relationship and share the same
type, both *(param_1 + 0x30) and x(local_10 + 0x30@) rep-
resent members of that type and are therefore aliases. It can
be further inferred that *(x(local_10 + 0x30) + 0x8) and
((param_1 + 0x30) + 0x8) are also aliases.

The design of TFG enables TYPEFORGE to avoid the
need for costly context-sensitive and flow-sensitive analysis,
allowing both decompilation and intra-procedural analysis to
be efficiently executed in parallel. During intra-procedural
analysis, TYPEFORGE records dataflow facts of callsite argu-
ments and function return values as connecting information.
After all function-level TFGs are built, TYPEFORGE con-
nects these individual graphs by adding dataflow edges
based on this connecting information, ultimately forming
the whole-program TFG. For example, in Figure 6, the TFG
of Fun_02d3 integrates with that of Fun_e413 via data flow
edges connecting the callsite arguments in the caller to the
parameters in the callee, with “Inter” labels are used to mark
these inter-procedural connections.

void Fun_01fd() {
void* local_10;
local_10 = malloc(0x40);
*(local_10 + 0x4) = rand();

1 void handle_config() {

2 ds_cfg* cfg;

3 cfg = (ds_cfg*)malloc(0x40);
4 cfg->id = rand();
5

6

7

8

free(local_10);
}

void Fun_114b() {
void* local_18;
local_18 = malloc(0x190);
*(local_18 + Ox6) = OxFF;

free(cfg);
}

9 void handle_stat() {

10 ds_stat* stat;

11 stat = (ds_stat*)malloc(0x10);
12 stat->state = OxFF;

14 free(stat); free(local_18);

(2)

Fun_01fd Fun_01fd

ox4
local_10 [\ ---==mmmmmmmmeees > (*(local_10 + 0x4)
S 2N
param_1

return . .
Evil Evil
\ Fun_114b / Fun_114b
local 18 J g - b
= %6 (local_18 + Ox6)

(b)

Figure 7: A simple example illustrating the challenges in
constraint construction. (a) shows a snippet of source code
and the corresponding decompiled code from a real-world
open-source project that includes typecasting. (b) shows a
portion of the TFG for this project.

Leveraging the design of TFG and NMAE, TypEFoRGE
can efficiently collect both explicit and implicit type hints,
supporting the construction of more sufficient and accurate
constraints for composite data types.

3.2.2. Conflict-Aware Type Hint Propagation. To con-
struct composite type constraints based on the whole-
program TFG, a straightforward strategy is to assume that
all nodes connected by data flow or typealias edges in the
TFG share the same type, then group these nodes together
and merge their type hints, similar to the approach used by
ReSym [19]. However, due to the existence of typecasting
and unions in programs, and the fact that decompilers typ-
ically cannot recognize them, nodes with direct dataflow
relationships in the TFG do not always mean they have
consistent types. Although typecasting and unions are rela-
tively rare in programs, if not identified, many spurious type
hints will propagate incorrectly in the whole-program TFG,
leading to highly inaccurate constraint construction.

Figure 7 illustrates this situation with a simple example.
Figure 7(a) shows source code (left) and its corresponding
decompiled code (right) from an open-source project. The
functions handle_config and handle_stat both call malloc
and free for memory allocation and deallocation, with the
pointers returned by malloc being cast to the corresponding
structure pointers ds_cfgx and ds_statx. However, due to the
absence of type information in stripped binaries, existing
decompilers are unable to recover typecasting from the
source code, as illustrated in the right side of Figure 7(a).
As a result, the TFG constructed from this decompiled
code adds dataflow edges between the return value of

malloc and both Fun_01fd:1local_10 and Fun_114b:1local_18,
as shown in Figure 7(b). The dataflow edges (marked as
“Evil”) in Figure 7(b) suggest that Fun_01fd:local_10 and
Fun_114b:local_18 share the same type. In reality, these two
variables have different types, and these edges are intro-
duced by typecasting in the source code. Without identifying
and removing these “evil edges”, the type hints for local_10
(corresponding to ds_cfgx) and local_18 (corresponding to
ds_statx) would be incorrectly conflated and propagated
to other nodes, resulting in numerous spurious members
appearing in the composite type constraints.

Similarly, variables involving unions can also introduce
“evil edges” in TFG, causing type hints to propagate incor-
rectly throughout the whole program. Although these cases
are relatively rare, even a single “evil edges” can cause
significant inaccuracies in the resulting type constraints.
Observations. We make the following key observations to
identify and remove ‘“evil edges” in the whole-program
TFG. O1: Different composite data types have distinct sizes,
which can typically be collected at callsites of functions
such as malloc, calloc, and memset (e.g., in Figure 7(a),
ds_cfg has a size of 0x40, while ds_stat has a size of
0x10). By collecting these critical constants and associating
them as attributes of NMAE, we can propagate these size
information throughout the whole-program TFG. Since “evil
edges” often lead to conflicting size information at nodes
(e.g., in Figure 7(b), malloc:return and free:param_1 might
simultaneously have sizes of both 0x40 and 0x19), they can
be effectively identified. O2: Different composite data types
have distinct member layouts. For example, in Figure 7(b),
Fun_01fd:local_10 has a 4-byte integer member at offset
0x4, while Fun_114b:local_18 has a 1-byte member at offset
ox6. When “evil edges” erroneously merge these type hints,
the resulting member layout conflicts serve as a reliable
signal for identifying such edges.

Algorithm. Based on the above observations, we design
Conflict-Aware Type Hint Propagation to identify and re-
move “evil edges” in the whole-program TFG, and ulti-
mately construct accurate constraints for composite data
types. The Conflict-Aware Type Hint Propagation faces two
key challenges during implementation. First, due to the
prevalence of wrapper functions for memory management in
programs, it is often impossible to directly collect constants
representing sizes from callsites of functions like malloc. To
address this, we design a Backward Constant Tracking algo-
rithm that traces constant usage backward from key callsite’s
arguments in the TFG, enabling identification of wrapper
functions and attribution of size properties to NMAE nodes.
Another challenge is how member type hints should prop-
agate within the whole-program TFG to accurately capture
conflicts, as insufficient member type hints could lead to
missed conflicts during detection. To address this challenge,
we observe that within each single program execution path,
all member accesses to a composite data type must be
valid and conflict-free, as invalid access would otherwise
result in runtime errors. Therefore, we first identify source
nodes in the whole-program TFG, and utilize the data flow
edges to traverse all possible program execution paths. We

Algorithm 2: Conflict-Aware Type Hint
Propagation

Input: Whole-program TFG G
Output: Variable-Constraint Mapping M

1 A+ {a|a € G.GETSIZESENSITIVEPARAMS()}
2 foreach argument node a € A do
(expr,,o) +
BACKWARDTRACKCONSTANTS(G, a)
G < G\ REMOVEWRAPPEREDGES (expr;)
expr,.SETSIZE (o)
end
E it < MULTISOURCESIZEPROPAGATION(G)
g — g \ Eemﬁl

9 foreach source node exprs, € G.GETSOURCES() do
10 L + BUILDLAYOUTFROMPATHS(G, exprs)

1 G < UPDATELAYOUT(G, exprs, L)

12 end

13 Eepy < MULTISOURCELAYOUTPROPAGATION(G)
14 g — g \ Eem'l

15 G < ADDINTERTYPEALIAS(G)
16 M < BUILDCONSTRAINTMAP(G)
17 return M

w

N & A

then collect all member type hints from each source node’s
possible execution paths and construct layouts, which are
then used to detect conflicts between layouts and identify
“evil edges”.

Algorithm 2 outlines the complete process of Conflict-
Aware Type Hint Propagation. This algorithm consists of
three phases: first, it uses composite type sizes to detect
conflicts and remove “‘evil edges”; second, it employs layout
information for more refined conflict detection and edge
removal; finally, it adds inter-procedural typealias edges
and builds a mapping from decompiler-inferred variables to
composite type constraints.

Specifically, In the first phase, Algorithm 2 begins
by collecting size-related parameters from functions such
as malloc and memset (line 1), then performs Backward
Constant Tracking on the TFG to identify which constant
arguments at callsites ultimately propagate to these size-
sensitive parameters (line 3). These size values are then
added as node attributes to the callsite’s receiver nodes (line
5). Subsequently, based on these size attributes, a BFS-
based multi-source size propagation is employed to detect
conflicts and identify and remove “evil edges” (lines 7-8).
However, not all “evil edges” can be detected based solely
on size information, as there exist cases where sizes cannot
be calculated or where composite types have identical sizes
but different internal layouts. Therefore, in the second phase,
Algorithm 2 further employs layout information for more
refined conflict detection. The algorithm first constructs
layouts based on source nodes and their paths in the TFG
(lines 10-11), then, these layout specifications are propa-
gated along paths from sources to connected nodes. Some
nodes will contain conflicting layouts from different sources,

enabling the identification and removal of additional “evil
edges” (lines 13-14). Finally, after eliminating the impact of
“evil edges”, the algorithm adds inter-procedural typealias
edges to TFG nodes and constructs the final composite
type constraints (lines 15-16), including member layouts,
pointer reference, and nesting relationships. Furthermore,
the decompiler-inferred variables are then mapped to these
constraints, clearly establishing the correspondence between
variables and their respective composite type constraints.

3.2.3. Type Declaration Synthesis. Most existing ap-
proaches typically only recovers a single composite data
type declaration directly from member offsets and sizes.
However, due to the ambiguity caused by the lack of type
information in stripped binaries, the same constraints may
lead to multiple potential data type declarations. Through a
comprehensive analysis, we identify the following key fac-
tors contributing to this ambiguity in recovering composite
data types.

e Fi: Loss of Type Boundaries Due to Flattening. During
compilation, structures and arrays allocated on the stack or
nested within other data types are often flattened into sepa-
rate variables, removing the clear boundaries that originally
distinguished related data types. This flattening obscures
whether a variable is part of a larger structure or array, or
if it stands alone as an independent entity.

e F2: Ambiguity in Determining Whether a Pointer Refer-
ences a Single Object or an Array. For example, if a node
in TFG has four member edges, each member with a size
of 1 byte, it may be ambiguous whether the node represents
a pointer to a char array or a pointer to a structure with
four 1-byte members. Similarly, a struct_A* pointer could
point to either a single struct_A instance or an array of
struct_A, with the latter potentially leading to constraints
that incorrectly include multiple repeated members.

o F3: Absence of Type Casting and Union Information. As
mentioned in Section 3.2.2, Algorithm 2 is used for detect-
ing conflicts and removing “evil edges” in TFG. However,
for nodes associated with these edges, it remains difficult
to determine whether they represent unions or other types
involving type casting.

To address the ambiguities caused by the above-
mentioned factors, we observe that by strategically com-
bining, selecting, and splitting members within constraints
according to certain conventions, multiple potential com-
posite data type declarations can be synthesized, with the
correct one often among them. For example, when member
constraints of a composite data type exhibit repetitive pat-
terns, this suggests the corresponding type could be either a
single structure or a flattened array of structures. Based on
these insights, we designed the adaptive sliding window al-
gorithm to identify and leverage these characteristics within
constraints, guiding the combination, selection, and splitting
of member constraints to synthesize a comprehensive series
of candidate composite data type declarations.

Specifically, the algorithm employs an iterative scanning
process, with each iteration referred to as a Pass. During
each Pass, the algorithm identifies characteristics within the

Constraint_1 Constraint_2
0x0: uint 0x0: char
0x8: char* 0x1: char
0x10: ptrRef to Constraint_3 ox8: uint, long

[0x18: uint ’

0x20: ptrRef to Constraint_3

[0x28: uint ’

0x2c: char

Type Declaration Pool l Type Declaration Pool l

struct struct_1_1 { struct struct_2_1 {

uint field_ox0; char field_oxo;

char* field_ox8; char field_ox1;

anon_struct { uint field_ox8;
struct_3* field_0x0; }

uint field_6ox8;
} [2] field_ex1e; struct struct_2_2 {
char field_ex2c; char field_oxe;
} char field_ox1;
long field_ox8;
}

struct struct_1_2 {
uint field_exe;

struct struct_2_3 {

char* field_ox8; char field_oxeo;
struct_3* field_ox10; char field_ox1;
uint field_ox18; anon_union {

struct_3* field_ox20;
uint field_ox28;
char field_ex2c;

} }

uint member_1;
long member_2;
} field_exs8;

@ (b)

Figure 8: Synthesize type declarations from constraints.

constraints and uses them to synthesize a series of composite
data type declarations. The window size is then dynamically
adjusted, and the process continues until the window spans
the entire constraint.

Figure 8 illustrates the working mechanism of adaptive
sliding window algorithm through two intuitive examples.
The Pass in Figure 8(a) employs a sliding window to
identify duplicate member constraints at offsets @x10 and
0x20, indicating the potential presence of a flattened nested
structure. As a result, two candidate composite data types
struct_1_1 and struct_1_2 are created. Similarly, the Pass
in Figure 8(b) detects a conflicting member constraint at
offset 0x8, where the member constraint could be satis-
fied by either a uint or a long type. Consequently, three
possible composite data types are created: struct_2_1 with
uint as the type of field_ox8, struct_2_2 with long, and
struct_2_3, a union containing both uint and long, all
synthesized composite data type declarations are stored in
the Type Declaration Pool.

We currently design three specific Passes to target the
ambiguities caused by the above factors. The first Pass
focuses on recovering the boundaries of flattened data types
and their nested relationships, the second Pass addresses
conflicting member constraints, and the third Pass is dedi-
cated to resolving the types of nodes in the TFG that are
associated with “evil edges”. According to our evaluation in
Section 5.3, these three Passes are sufficient to recover the
layout and relationships of the majority of composite data
types. Furthermore, our algorithm is easy to implement and
integrates additional Passes if needed.

3.3. Readability-Guided Selection

3.3.1. Retyping. TyPEFORGE first retrieves all composite
type declarations from the Type Declaration Pool corre-
sponding to each constraint. It then utilizes the Variable-
Constraint Mapping constructed by Algorithm 2 to assign
different type declarations to variables through the decom-
piler’s retype interface, thereby generating multiple variants
of the decompiled code. For each constraint, this process
ultimately forms a Code-Type Map (CTMap), represented
as CTMap = {(D1 : Type1),(Dz : Types),...,(Dy :
Type,)}, where Type;, i = 1,2,...,n represent different
composite data type declarations synthesized from the same
constraint, and D; represents the set of decompiled code col-
lected after applying Type; through the decompiler’s retype
interface. Each D; within the CT' M ap can be expressed as
D; = {dy,,dy,,...,dsm}, where the subscript f; denotes
the functions in the stripped binary and dy, represents the
decompiled code for that function. For efficiency, we only
collect functions that access ambiguous members within the
composite data type. Notably, for any D; and D; within
the same C'T' Map, the functions they contain are identical
and can be represented as D; = {dy,,dy,,...,dsn} and
D; ={d;,,d;,,...,d},,}. Here, each dy; and d}, represent
different variants of decompiled code for the same function,
with the only difference being the assignment of different
type declarations to the same variables within the functions,
resulting in structural changes in the decompiled code.

To assess the readability of decompiled code variants
in CTMap while simultaneously considering both code
syntax and semantics and selecting the best-fit composite
data type declaration, the most straightforward and cost-
effective approach is to directly score the decompiled code
using a large language model (LLM). However, the ab-
sence of reference standards in decompiled code can lead
to subjective and inconsistent outcomes. Additionally, the
inherent randomness of LLMs can introduce fluctuations
and biases in the results, further compromising the accuracy
and reliability of our selections. Therefore, it is a challenge
to ensure reliable and objective results without incurring
significant overhead.

3.3.2. LLM-assisted Double-elimination. To address the
above challenge, we reference and design an LLM-assisted
double-elimination mechanism [20] that pairs decompiled
code variants for comparative readability assessment. Com-
pared to direct scoring, this mechanism introduces a com-
parative reference, making our assessment more objective
and allowing TYPEFORGE to determine which decompiled
code variant exhibits stronger readability.

Figure 9 provides a simple example illustrating how this
mechanism works. Initially, all CT Pair : (D; : Type;)
within the C'T'Map corresponding to each constraint start
in the winner’s bracket (Green border). During each round,
if decompiled code in a CT Pair is judged to have lower
readability, it moves to the loser’s bracket (Yellow border).
It is eliminated from the competition if it loses again in
the loser’s bracket. To illustrate their comparison process,

(Dy:Type;)
(Dy:Typey)
(Dy:Typey)
(D3:Types) (D: Type Best-Fit
3:Types) @ Type Declaration
)
(Dy:Typey)

LLM-assisted
Judge

(D3:Types)

(D3:Typeg3)

Figure 9: An intuitive example demonstrating the LLM-
assisted double-elimination mechanism in TYPEFORGE.

we mark the comparison process of (Do : Types) and
(D3 : Types) in green and yellow. Ultimately, the last
remaining C'T'Pair in the winner’s bracket faces the last
remaining CT'Pair from the loser’s bracket to determine
the final winner. To mitigate the impact of the LLM’s
inherent randomness, each comparison round is executed
in parallel ¢ times (with ¢ = 3 in our evaluation), and the
CTPair with the highest number of wins is selected. The
expected number of comparisons in our double-elimination
mechanism is approximately 2n — 2, where n is the total
number of CT Pairs. This is significantly lower than the n?
comparisons required for exhaustive pairwise comparisons.

Specifically, in each round of CTPair comparison,
when comparing (D; : Type;) and (D; : Type;), where
D; = {dy,,dy,,...,dsm} and D; = {d} ,d} ... d}, .},
TypEFORGE construct a set of code pairs as follows:
CodePuairs = {(dfl,d}1>, (dfy,df,)s s (dfm,d},,)}, and
use this CodePairs as input for the LLM-assisted Double-
Elimination process.
Syntactic Clarity Metric. To ensure objectivity and ac-
curacy in readability assessment as much as possible, we
collect a set of syntactic features related to composite data
types and calculate a syntactic clarity metric to assist the
LLM in making more accurate judgments. These features
are derived from variables, expressions, and statements as-
sociated with member accesses to composite data types.
For example, decompiled code without well-recovered types
often contains numerous local variables, pointer arithmetic,
direct memory accesses, and typecasting. In contrast, code
with well-recovered types typically has fewer of these hard-
to-read operations, instead showing an increase in the use of
member access operators . and ->, as well as the subscript
operator []. We count their occurrences and follow a similar
method in R2I [23] to compute the syntactic clarity metric.
Prompt Design. TyPEFORGE interacts with the LLM using
the prompt shown in the box below, where df, and d}i
represent the respective decompiled code variants of the
same function, and metricy, and metric}i contain the
corresponding syntactic clarity metrics.

Based on the LLM’s response, TYPEFORGE judges the
relative readability of the two decompiled code snippets.
This process continues until the final (D; : Type;) is se-

lected, with T'ype; being considered the Best-Fit composite
data type declaration.

It is worth mentioning that since each constraint cor-
responds to an independent Type Declaration Pool and
CT M ap, our LLM-assisted readability-guided selection can
be executed in parallel for efficient processing, further re-
ducing time costs.

Prompt for Readability Assessment

Please assess the readability of each pair of the fol-
lowing decompiled code snippets, considering both
the semantic content of the code and syntactic clarity
metrics (where higher values indicate greater syntac-
tic clarity).

Code snippet pairs and syntactic clarity metrics:
(dg,, metricg,) (df,, metric)

(df,., metricy,) (dy , metricg)

4. Implementation

The prototype of TyPEFORGE is implemented as a Ghidra
Extension with over 12,000 lines of code. The TFG-based
Type Synthesis consists of approximately 11,000 lines of
Java code, about 1,000 lines of Python code are used for
Readability-Guided Selection. TYPEFORGE uses Ghidra [13]
as the foundational analysis framework for disassembly, de-
compilation, and retype functionality because it is a widely
used open-source binary analysis tool with a robust API
and strong community support. Notably, Ghidra supports the
analysis of stripped binaries across multiple architectures
using its intermediate representation, PCode [26], which
forms the foundation for TyPEFORGE’s analysis and enables
TyPEFORGE to analyze binaries from various architectures.
Furthermore, due to the design of TFG being independent
of any specific decompiler, TYPEFORGE could utilize any
decompiler capable of primitive type inference (such as IDA
Pro and Binary Ninja) as its underlying analysis frame-
work. For Readability-Guided Selection, TYPEFORGE utilizes
Tree-sitter [27] to calculate the syntactic clarity metric and
automates interactions with LLMs using LangChain [28].
Our default model is OpenAI’'s GPT-40 mini [29], which
supports up to 128k tokens.

5. Evaluation

5.1. Experiment Setup

Platform. All our experiments were conducted on a personal
computer running Arch Linux with 8 processors Intel(R)
Core i7-12700 CPU @ 2.10GHz and 24GB of memory.
Ghidra version is 11.0.3.

Dataset. Previous studies [9], [18], [19] have built large
and complex datasets for recovering composite data types
from binaries, as the effectiveness of learning-based methods

heavily relies on the quality of the training set. In con-
trast, one of the key advantages of TYPEFORGE is that its
performance primarily depends on accurately synthesized
type declarations and LLM-assisted readability assessments.
Since most existing LLMs are already trained on exten-
sive code datasets, TYPEFORGE can achieve decently robust
performance without requiring additional training. Conse-
quently, we only need a moderately sized dataset to eval-
uate TYPEFORGE’s effectiveness. To facilitate comparison
with existing work, we use the same evaluation dataset
as OSPREY [16], which includes GNU coreutils [30] and
several larger, more complex real-world binary programs
from the Howard [31] dataset. Our dataset contains over
10,000 functions and more than 11,000 variables that hold
composite data types.

Metrics. Similar to previous work [16], [18], [19], we evalu-
ate the TypEFORGE’s effectiveness in Composite Data Type
Identification and Layout Recovery. We also evaluate the
effectiveness of Relationship Recovery between composite
data types, such as structure pointer references, structure
nesting, and unions, which are common in real-world open-
source projects. Below, we will provide a detailed explana-
tion of our metrics.

e Composite Data Type Identification: In this step, we
evaluate the precision and recall of TyPEFORGE in predicting
whether variables are of composite data types within a
stripped binary. We define Vy; as the ground-truth set of
variables corresponding to composite data types, including
structs and pointers to structs, unions and pointers to unions,
and arrays, extracted from debug information. Vj,fe, is
defined as the set of all variables that TyPEFORGE infers
as corresponding to composite data types, while V.7 fer TP~
resents the correctly inferred variables. The recall, precision,
and F1 score of Composite Data Type Identification are
defined as:

T T
infer infer
Recvar =) Prevar =
Vgt Vtinfer
2 X Recyar X Preyar
Flvar =

Recyar + Preyar

All subsequent F1 scores are defined similarly based on their
precision and recall values.
e Layout Recovery: In this step, we focus on evaluating the
recovery of struct layouts, as most composite data types in
stripped binaries are structs and their pointers. Similar to
the approach in previous work [19], we evaluate the layout
based on the offsets and sizes of each member.

For a variable v € V¢, inferred by TypEFORGE, we
define its Layout as a set of pairs:

, (of fsety, size,)}

Each pair represents the offset and size attribute of a
member in the struct. For example, in Figure 4, the
layout for struct_74_a is represented as Lfg}g;”-l

{(0z0, 024}, (08, 0x8), (0210, 0x4), (0218, 0x8), (0220,
0x4)}. Similarly, we define the ground truth layout for a

infer = 1(0f fseto, sizeg), ...

variable as Lg,. Finally, the recall and precision for layout
recovery are defined as follows:

> vev | Linper N Lyl

Z’UEV ‘th| ’

ZUEV |L;)nfe7‘ N Lgt|
ZvEV ‘L;)nfer|

o Relationship Recovery: In source code, relationships
between composite data types are easily identifiable
by their type names. However, these type names are
removed during compilation, making it necessary to
develop a reliable and accurate approach to evaluate the
recovery of relationships between structures. We define
Tinfer as the set of all composite data types inferred
by TypEForGe. The relationships between these types
are represented as a set of 5-tuples: RelationS;,fer =
{{tsre, of fset, tast, RelationType, ptr Level), ..., {(...)}.
Where tg.c and tqs; € Tinger, RelationType specifies the
type of relationship (including structure pointer reference,
structure nesting, and union), and ptrLevel indicates the
pointer reference level. We similarly define the ground
truth relationships as Relationsg.. Since type names are
unavailable, we use layout to determine the correctness
of relationship recovery. Specifically, for each 5-tuple in
Relations;,er, we consider the relationship correctly
recovered if the layouts of ¢/ and t'/" match those
in Relationsy, and the of fset, RelationType, and
ptrLevel also align with Relationsg. Finally, the recall
and precision for Relationship Recovery are defined as
follows:

Recy, =

Prep =

|Relations;y, fer N Relations g

Rec,

)

Relations g
|Relations;y rer N Relations g

Pre, =
" |Relationsiy fer|

5.2. Effectiveness

Table 2 presents the results of TyPEFoRGE across differ-
ent optimization levels for the three aforementioned metrics
on our evaluation dataset. We first analyze the data for
each metric in detail and then measure the runtime of each
module within TypPEFORGE.

The data show that TypEFORGE achieves its strongest
overall performance at optimization level O2 for Composite
Data Type Identification, with an overall precision of 74.9%,
a recall of 82.9% and an F1 score of 78.8%. This is likely
because, under O2 optimization, many non-composite local
variables are merged or removed by the compiler, thereby
reducing interference with TyPEFORGE’s analysis. Overall,
TypEFORGE performs consistently well in Composite Data
Type Identification across all optimization levels, with min-
imal performance variation.

In the context of Layout Recovery, TYPEFORGE achieves
its optimal performance at optimization level OO0, with an
overall precision of 97.9%, a recall of 82.2%, and an FI

TABLE 2: TypreForGe’s Performance Metrics (Precision,
Recall, and F1 score (%)) across optimization levels for
Composite Data Type Identification, Layout Recovery and
Relationship Recovery

Task Metric 00 01 02 03

Precision 743 761 749 735
Recall 776 775 829 81.8
F1 Score 759 769 788 774

Precision 97.9 973 939 942
Recall 822 463 312 308
F1 Score 89.4 627 468 464

Precision 47.9 554 942 669
Recall 50.3 289 308 222
Fl Score 49.1 379 464 333

Composite Data Type
Identification

Layout Recovery

Relationship Recovery

TABLE 3: TypeForGE’s Time Consuming Analysis at op-
timization level O0

. TFG-based Type Readability-
Project LoC Synthesis Guided Selection Total
. Double-
Retyping ., o
coreutils 4.8k 1.7s 4.1s 8.4s 14.25
gzip 10k 5.1s 14.7s 20.4s 40.2s
grep 27k 39s 1.2s 4.1s 9.2s
wget2 43k 6.1s 1.7s 5.2s 13.0s
lighttpd 69k 17.6s 21.9s 44.2s 83.7s

score of 89.4%, as shown in Table 2. At higher optimiza-
tion levels (O1-03), TyrEFoORGE maintains high precision
while exhibiting gradually declining recall for layout recov-
ery, which aligns with our expectations: under aggressive
compiler optimizations, composite type members are of-
ten merged or flattened, thereby introducing challenges for
layout reconstruction. Specifically, the Conflict-Aware Type
Hint Propagation adopts a conservative strategy to prevent
type hints from propagating along “evil edges”. However, at
higher optimization levels, many conflicts detected by this
algorithm are compiler-induced and indistinguishable, which
may inadvertently remove legitimate data flow edges. This
results in failed propagation of valid type hints that would
otherwise propagate correctly. Furthermore, the lower recall
rate can be attributed to two additional key factors: (1) Not
all composite data type members are accessed within
the program. For members that are never accessed within
the program, TyPEFORGE cannot collect any information
about them, a common limitation faced by all data flow
analysis tools. (2) The same pointer may be interpreted
as different composite data types on different locations
in the program. For example, if structure A is nested as
the first member of structure B, a pointer to structure B may
be interpreted as pointing to structure A through upcasting
at certain program locations. We refer to this situation as
Pointer Type Ambiguity, which can result in mismatches
between the actual type that the pointer references (as
inferred by TypPEFORGE) and the ground truth collected from
debugging symbols.

Table 2 further demonstrates that TyPEFORGE recovers
relationships with a precision of 47.9% and a recall of

TABLE 4: Comparison with SOTA approaches on three metrics in Precision (P), Recall (R) and F1 score (F1) (%), as well

as the analysis time consumed by each approach.

Composite Data Type . . e
Identification Layout Recovery Relationship Recovery Analysis Time

Methods Recall Precision F1 Recall Precision F1 Recall Precision F1 (s)
DIRTY 36.8 62.0 46.2 4.1 51.8 7.6 0.8 0 0 10.3
OSPREY 18.5 65.5 28.9 87.3 86.5 86.9 - 528.2%
TYGR 86.4 345 49.3 5.3 31.3 9.1 - 323
ReSym - - - 352 81.1 49.0 - - - -
TypeForge 87.9 76.3 81.7 80.9 96.9 88.2 66.6 78.5 72.1 7.7

50.3%, and an F1 score of 49.1% at optimization level OO0,
achieving its best performance across optimization levels
00-O3. Compared to previous tasks, relationship recov-
ery is the most challenging. This difficulty arises because
relationship recovery not only relies on accurate layout
recovery but also requires accurately handling the com-
plex pointer relationships within the program. Additionally,
under higher optimization levels, complex nested relation-
ships are often flattened by compilers, lose their original
boundary information, making recovery even more diffi-
cult. Nevertheless, relying on TFG-based Type Synthesis
and Readability-Guided Selection, TYPEFORGE could still
recover a significant portion of these complex relationships
between structures, something that current state-of-the-art
approaches have been unable to achieve. A detailed com-
parison with state-of-the-art approaches [9], [16], [18], [19]
will be provided in Section 5.3.

Table 3 presents TyPEFORGE’s average time consump-
tion at optimization level OO0 across several projects in our
dataset. LoC represents lines of Code, with the projects
arranged from smallest to largest based on LoC. Overall,
TFG-based Type Synthesis, which builds constraints and
synthesizes possible type declarations, incurs the lowest time
consumption, primarily due to the efficient design of TFG
and Conflict-Aware Type Hint Propagation. Notably, our
program analysis technique achieves significantly lower run-
time overhead than existing state-of-the-art methods while
maintaining high accuracy (requiring only 17.6 seconds on
lighttpd), demonstrating its potential for future adaptation
to other binary analysis tasks. The time consumption in
Readability-Guided Selection is directly correlated with the
number of type declarations generated in stage one. As this
number increases, the retyping process during decompilation
requires more time, and our double-elimination mechanism
produces more code pairs for LLM-assisted assessment.
Nevertheless, the overall time overhead remains consider-
ably lower than existing approaches, as detailed in Sec-
tion 5.3.

TYPEFORGE can be applied to various downstream se-
curity analysis tasks, including decompilation, vulnerability
detection, indirect call recovery, and exploitation. To further
demonstrate the effectiveness of TYPEFORGE, we applied
TYPEFORGE to two important downstream tasks: decompiled
code optimization and vulnerability detection, with detailed
results in the Appendix A.

5.3. Comparison with State-of-the-Arts

We compare TyPEFORGE against state-of-the-art
(SOTA) approaches, including DIRTY [9], OSPREY [16],
ReSym [19], and TYGR [18]. Our evaluation uses the
coreutils dataset provided by OSPREY (different from
Section 5.2’s coreutils dataset), which has been widely
adopted by other related works. For DIRTY, we selected
the “DIRTY-Multitask” model, which has demonstrated
superior performance among their available models. Since
OSPREY is not publicly available, its authors generously
provided us with their results on the dataset. Additionally,
as ReSym’s artifacts are not yet fully available, we utilized
the published results on the same dataset with permission
from the authors.

Table 4 shows the effectiveness of these approaches
on Composite Data Type Identification, Layout Recovery,
and Relationship Recovery, and we mark approaches that
either fail to complete the task or do not provide results
with a dash. In Composite Data Type Identification, TYGR
performs the best among existing approaches, followed
by DIRTY. OSPREY performs worse primarily because it
cannot recover register-based variables, including function
parameters and some local variables. TyPEFORGE, however,
significantly outperforms the existing best approach, TYGR,
with a 32.4% improvement in F1 score. Notably, TYGR’s
functionality focuses on using a GNN-based classifier that
determines whether a variable’s type is a struct pointer
(struct*) or a stack-allocated struct, which means their
“Struct Accuracy” metric evaluates the same capability as
our Composite Data Type Identification metric.

In Layout Recovery, TyPEFORGE achieves a 39.2%
higher F1 score than ReSym and a 1.3% higher F1 score
than OSPREY, which are two of the best performers among
existing approaches. Our recall is slightly lower than OS-
PREY due to the same reason previously mentioned: the
algorithm we use to eliminate “evil edges” may also remove
valid ones, which prevents some type hints from being
properly propagated. However, the benefit of this algorithm
is a significantly higher accuracy. As shown in the figure,
TypEFORGE achieves an accuracy of 96.9%, nearly 10%
higher than OSPREY. TypEFoORGE’s high precision enables
it to be effectively applied in downstream security tasks with
a very low false positive rate. Another noteworthy detail is
that due to TYGR’s lack of inter-procedural analysis, its

“struct member type prediction” functionality works only
for stack-allocated structs and cannot recover layouts for
struct pointers, which constitute the majority of composite
types. As a result, TYGR achieves poor performance in our
Layout Recovery metric, with a recall of only 5.3% and a
precision of 31.3%.

In Relationship Recovery, we mark approaches that can-
not complete the task or provide data as a dash. Since
DIRTY can select complete composite data type declarations
from its training dataset based on decompiled code, we fully
parse its results to meet the evaluation criteria of Rela-
tionship Recovery. However, DIRTY still performs poorly
in this task, with no relationships accurately recovered.
In contrast, TYPEFORGE successfully recovers relationships
between composite data types with 78.5% precision and
66.6% recall, significantly outperforming DIRTY.

We also compared the analysis time. To ensure fairness,
we start timing each approach from the initial analysis
phase. For DIRTY, we calculated the total time for decom-
pilation, model inference, and subsequent analysis. TYGR
requires extracting data flow information from stripped bi-
naries as input to the model, so we calculated the total
time for data flow analysis and model inference. Since
OSPREY is not publicly available to run in our hardware
environment, we adopted the execution times reported in
the OSPREY paper and marked them () accordingly in
Table 4. Nevertheless, based on hardware performance dif-
ferentials, we can provide an optimistic estimate of OS-
PREY’s time cost, projecting an average execution time of
approximately 200 seconds in our hardware environment.
The results in Table 4 show that TypEFoRGE has the second-
lowest analysis overhead, with DIRTY having the lowest.
However, TyPEFORGE achieves significantly better overall
performance than DIRTY. Additionally, even when com-
pared to the optimistic time estimate for the best-performing
existing approach, OSPREY, TyPEFoORGE still only requires
3.8% of OSPREY’s analysis time.

TyPEFORGE performs strongly in composite data type
recovery, achieving high accuracy with minimal time over-
head. However, since TypEFORGE leverages LLMs, we
also estimated its token usage. On the coreutils dataset,
TypEFORGE consumes an average of 180,000 tokens per
binary, costing approximately $0.12 using the gpt-4o-
mini [29] model. TypEFORGE has demonstrated significant
potential in addressing various real-world reverse engineer-
ing tasks.

5.4. Ablation Study

To demonstrate the importance of each component in
TyPEFORGE’s design, we conducted two sets of ablation
studies: (1) We evaluate the importance of Readability-
Guided Selection (Section 3.3.2) by comparing it with a
simple heuristic approach that directly synthesizes final
type declarations deterministically from constraints. (2) We
evaluate the significance of Conflict-Aware Type Hint Prop-
agation by comparing it with a method that propagates type
hints across all nodes with data flow edges.

TABLE 5: Ablation study demonstrating the effectiveness
of each component

Composite Data Type Layout Recovery
Identification
R P F1 R P F1

TypeForge 82.7 95.6 88.7 632 978 769
TypeForger.ss 662 69.3 67.7 55.8 734 634
TypeForgeevil 793 877 83.2 87.6 155 269

Without Readability Assessment. We implemented a
straightforward heuristic that deterministically generates fi-
nal type declaration from constraints, and we refer to this
method as TYPEFORGE f,s;. Table 5 shows the performance
of TypEFORGE compared with TYPEFORGE 4. As can be
seen, without readability assessment, precision drops signif-
icantly, primarily due to the increase in erroneous type and
member identification.

Propagate Type Hints Directly. We denoted the method
that indiscriminately propagates type hints to all nodes with
dataflow edges as TYPEFORGE.,;;, and compared it with
TypPEFORGE. The results are also shown in Table 5. It is ev-
ident that TYPEFORGE,,;; performs significantly worse than
TypeFoRGE does, particularly in Layout Recovery because
due to the presence of typecasting and union, TYPEFORGE,;
tends to merge type hints from unrelated composite data
types, resulting in numerous false positives and conflicts.

6. Discussion

Limitations. In this paper, we propose a two-stage
comprehensive-selection approach, TYPEFORGE, to accu-
rately and efficiently recover composite data types from
stripped binary files by simulating the workflow of reverse
engineering experts. However, TYPEFORGE has the following
limitations. (1) The algorithm used in the Conflict-Aware
Type Hint Propagation to identify “evil edges” caused by
type casting and unions may result in some false positives,
leading to the removal of some valid dataflow edges as
well. Specifically, when Conflict-Aware Type Hint Prop-
agation propagates size and layout information to detect
conflicts, the algorithm cannot guarantee that detected “evil
edges” always correspond to unions or typecasting in the
source code. However, to prevent incorrect propagation of
type hints, we adopt a conservative strategy of removing
all edges detected as causing conflicts. This conservative
approach results in some recovered composite data types
may be missing certain members, as valid data flow edges
may be inadvertently removed. (2) Approximately 75% of
TypPEFORGE’s time overhead is spent on Readability-Guided
Selection using LLLMs. This occurs because current LLMs
require more time to generate output for longer prompts.

Future Work. We believe the most promising direction for
future work is to incorporate fuzzing concepts to further
enhance TYPEFORGE. Currently, TYPEFORGE generates com-
posite data type declarations through a search process that
does not utilize feedback from the readability of decom-

piled code. In the future, we plan to focus on designing
a feedback mechanism inspired by fuzzing and developing
more efficient and accurate readability assessment methods.
These improvements aim to optimize both the generation
and selection of composite data type declarations. By incor-
porating this feedback-driven approach, it would be possible
to explore a broader range of potential composite data type
declarations, ultimately achieving better recovery results.

7. Related Work

7.1. Binary Type Inference

Binary type inference is critical for many security anal-
ysis tasks, such as decompilation [7], [8], malware analy-
sis [10], [11], [12], vulnerability detection [2], [3], [4], and
root cause analysis [32], [33]. Over the past decade, signif-
icant works in this area include TIE [15], REWARDS [34],
ReTyped [35], OSPREY [16], DIRTY [9], and ReSym [19].
TIE, ReTyped, and OSPREY are static approaches that
rely on costly binary analysis algorithms. TIE constructs a
lattice-based type system to support binary type inference,
while ReTyped establishes a more sound type system for
precisely recovering polymorphic and recursive types. OS-
PREY achieves more accurate type inference through binary
dependency analysis [24] and probabilistic analysis. How-
ever, being limited by their underlying data flow analysis
algorithms, these approaches incur substantial computational
and time overhead during inter-procedural analysis, mak-
ing them less practical for real-world reverse engineering
tasks. REWARDS uses dynamic analysis to infer composite
data types by tracking variables to their final sink points.
However, it is limited by coverage and does not support
the recovery of user-defined structures. DIRTY and ReSym
are learning-based approaches that use models to predict
composite data types and layouts. However, DIRTY is re-
stricted to types present in its training set, while ReSym
is constrained by token limits in model input, making it
applicable only to smaller functions. In this paper, we
propose TypPEFORGE, which utilizes a novel graph structure
Type Flow Graph and Conflict-Aware Type Hint Propaga-
tion to efficiently and accurately construct composite data
type constraints. Based on these constraints, TYPEFORGE
further employs Readability-Guided Selection to address the
inherent ambiguity in composite type inference. Compared
to previous approaches, TYPEFORGE demonstrates superior
efficiency and accuracy, making it well-suited for real-world
reverse engineering tasks.

7.2. LLM for Program Analysis

Large Language Models (LLMs), such as GPTs [29]
and LLaMA [36], have demonstrated impressive results
in various code-related tasks, including code understand-
ing [37], [38] and code generation [39], [40]. As LLMs
continue to evolve, many researchers are exploring their
application in program analysis, particularly in areas like

decompilation [6], [19], vulnerability detection [1], [2], pro-
gram repair [41], [42], and fuzz testing [43], [44]. However,
due to the need for a global view and detailed semantic
capture of the entire binary program, LLMs are not well-
suited for directly recovering composite data types from
stripped binaries. In this paper, inspired by the use of LLMs
for reference-free text quality evaluation in NLP [45], we
leverage LLMs to assess the readability of decompiled code
and use this method to select the best-fit composite data type
from a series of candidates.

8. Conclusion

In this paper, we present TYPEFORGE, a novel ap-
proach for automatic recovery of composite data types from
stripped binaries, which employs a two-stage synthesis-
selection strategy to emulate the workflow of experts. We
evaluate TYPEFORGE against state-of-the-art approaches, and
the experimental results show it achieves high F1 scores of
81.7% and 88.2% in Composite Data Type Identification
and Layout Recovery, respectively, overall outperforming
existing state-of-the-art methods. Furthermore, TyYPEFORGE
is capable of recovering relationships between composite
data types, with an F1 Score of 72.1%, a task that the
majority of existing approaches cannot handle. Additionally,
TypeFORGE is far more efficient, requiring just about 3.8%
of the time needed by the best existing approach. These
results demonstrates TypPEFORGE’s ability to address the
challenges encountered in real-world reverse engineering
scenarios effectively.

Acknowledgments

We thank the Shepherd and reviewers for their construc-
tive feedback. The authors are supported in part by NSFC
(62302497, U24A20236, 92270204), CAS Project for Young
Scientists in Basic Research (Grant No. YSBR-118).

References

[11 Y. Liu, C. Zhang, F. Li, Y. Li, J. Zhou, J. Wang, L. Zhan, Y. Liu, and
W. Huo, “Semantic-enhanced static vulnerability detection in base-
band firmware,” in Proceedings of the 46th IEEE/ACM International
Conference on Software Engineering, ICSE 2024, Lisbon, Portugal,
April 14-20, 2024. ACM, 2024, pp. 173:1-173:12.

[2] J. Zhao, Y. Li, Y. Zou, Z. Liang, Y. Xiao, Y. Li, B. Peng, N. Zhong,
X. Wang, W. Wang, and W. Huo, “Leveraging semantic relations in
code and data to enhance taint analysis of embedded systems,” in
USENIX Security Symposium, 2024.

[3] P.Liu, Y. Zheng, C. Sun, C. Qin, D. Fang, M. Liu, and L. Sun, “FITS:
inferring intermediate taint sources for effective vulnerability analysis
of iot device firmware,” in Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 4, ASPLOS 2023, Vancouver, BC,
Canada, March 25-29, 2023, T. M. Aamodt, M. M. Swift, and
N. D. E. Jerger, Eds. ACM, 2023, pp. 138-152.

[4] H. Han, J. Kyea, Y. Jin, J. Kang, B. Pak, and I. Yun, “Queryx:
Symbolic query on decompiled code for finding bugs in COTS
binaries,” in 44th IEEE Symposium on Security and Privacy, SP 2023,
San Francisco, CA, USA, May 21-25, 2023. 1EEE, 2023, pp. 3279-
312795.

(1

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]
[14]
[15]

[16]

(171

(18]

[19]

[20]

[21]

(22]

Z. Gao, C. Zhang, H. Liu, W. Sun, Z. Tang, L. Jiang, J. Chen, and
Y. Xie, “Faster and better: Detecting vulnerabilities in linux-based iot
firmware with optimized reaching definition analysis,” Proceedings
2024 Network and Distributed System Security Symposium, 2024.

P. Hu, R. Liang, and K. Chen, “Degpt: Optimizing decompiler output
with Ilm,” Proceedings 2024 Network and Distributed System Security
Symposium, 2024.

Y. Cao, R. Liang, K. Chen, and P. Hu, “Boosting neural networks to
decompile optimized binaries,” in Annual Computer Security Appli-
cations Conference, ACSAC 2022, Austin, TX, USA, December 5-9,
2022. ACM, 2022, pp. 508-518.

L. Dramko, J. Lacomis, E. J. Schwartz, B. Vasilescu, and C. Le
Goues, “A taxonomy of C decompiler fidelity issues,” in 33rd
USENIX Security Symposium, USENIX Security 2024, Philadelphia,
PA, USA, August 14-16, 2024, D. Balzarotti and W. Xu, Eds.
USENIX Association, 2024.

Q. Chen, J. Lacomis, E. J. Schwartz, C. L. Goues, G. Neubig, and
B. Vasilescu, “Augmenting decompiler output with learned variable
names and types,” in USENIX Security Symposium, 2022.

Y. Chen, S. Lin, S. Huang, C. Lei, and C. Huang, “Guided malware
sample analysis based on graph neural networks,” IEEE Trans. Inf.
Forensics Secur., vol. 18, pp. 4128-4143, 2023.

D. Corlatescu, A. Dinu, M. Gaman, and P. Sumedrea, “Embersim:
A large-scale databank for boosting similarity search in malware
analysis,” in Advances in Neural Information Processing Systems
36: Annual Conference on Neural Information Processing Systems
2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and
S. Levine, Eds., 2023.

F. Barr-Smith, X. Ugarte-Pedrero, M. Graziano, R. Spolaor, and
I. Martinovic, “Survivalism: Systematic analysis of windows mal-
ware living-off-the-land,” in 42nd IEEE Symposium on Security and
Privacy, SP 2021, San Francisco, CA, USA, 24-27 May 2021. 1EEE,
2021, pp. 1557-1574.

“Ghidra,” https://ghidra-sre.org/, 2023.
“hex-rays,” https://hex-rays.com, 2023.

J. Lee, T. Avgerinos, and D. Brumley, “Tie: Principled reverse en-
gineering of types in binary programs,” in Network and Distributed
System Security Symposium, 2011.

Z. Zhang, Y. Ye, W. You, G. Tao, W.-C. Lee, Y. Kwon, Y. Aafer,
and X. Zhang, “Osprey: Recovery of variable and data structure via
probabilistic analysis for stripped binary,” 2021 IEEE Symposium on
Security and Privacy (SP), pp. 813-832, 2021.

G. Balakrishnan and T. Reps, “Wysinwyx: What you see is not what
you execute,” ACM Trans. Program. Lang. Syst., vol. 32, no. 6, aug
2010.

C. Zhu, Z. Li, A. Xue, A. P. Bajaj, W. Gibbs, Y. Liu, R. Alur,
T. Bao, H. Dai, A. Doupé, M. Naik, Y. Shoshitaishvili, R. Wang,
and A. Machiry, “Tygr: Type inference on stripped binaries using
graph neural networks,” in USENIX Security Symposium, 2024.

D. Xie, Z. Zhang, N. Jiang, X. Xu, L. Tan, and X. Zhang, “Resym:
Harnessing I1lms to recover variable and data structure symbols from
stripped binaries,” in Proceedings of the 2024 on ACM SIGSAC
Conference on Computer and Communications Security, 2024, pp.
4554-4568.

H. Aziz, S. Gaspers, S. Mackenzie, N. Mattei, P. Stursberg, and
T. Walsh, “Fixing balanced knockout and double elimination tour-
naments,” Artif. Intell., vol. 262, pp. 1-14, 2018.

T. McCabe, “A complexity measure,” IEEE Transactions on Software
Engineering, vol. SE-2, no. 4, pp. 308-320, 1976.

A. Gussoni, A. D. Federico, P. Fezzardi, and G. Agosta, “A comb for
decompiled c code,” Proceedings of the 15th ACM Asia Conference
on Computer and Communications Security, 2020.

[23]

[24]

[25]
[26]

[27]
[28]
[29]
[30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

H. Eom, D. Kim, S. Lim, H. Koo, and S. Hwang, “R2i: A relative
readability metric for decompiled code,” Proc. ACM Softw. Eng.,
vol. 1, pp. 383-405, 2024.

Z. Zhang, W. You, G. Tao, G. Wei, Y. Kwon, and X. Zhang, “Bda:
practical dependence analysis for binary executables by unbiased
whole-program path sampling and per-path abstract interpretation,”
Proceedings of the ACM on Programming Languages, vol. 3, pp. 1
- 31, 2019.

“binary-ninja,” https://binary.ninja/, 2023.

N. Naus, F. Verbeek, D. Walker, and B. Ravindran, “A formal seman-
tics for p-code,” in Verified Software. Theories, Tools and Experiments
- 14th International Conference, VSTTE 2022, Trento, Italy, October
17-18, 2022, Revised Selected Papers, ser. Lecture Notes in Computer
Science, A. Lal and S. Tonetta, Eds., vol. 13800. Springer, 2022,
pp- 111-128.

“Tree-sitter,” https://tree-sitter.github.io/tree-sitter/, 2024.
“Langchain,” https://github.com/langchain-ai/langchain, 2024.
“gpt-40-mini,” https://openai.com/, 2024.

“Coreutils,” https://www.gnu.org/software/coreutils/, 2024.

A. Slowinska, T. Stancescu, and H. Bos, “Howard: A dynamic
excavator for reverse engineering data structures,” in Proceedings of
the Network and Distributed System Security Symposium, NDSS 2011,
San Diego, California, USA, 6th February - 9th February 2011. The
Internet Society, 2011.

D. Xu, D. Tang, Y. Chen, X. Wang, K. Chen, H. Tang, and L. Li,
“Racing on the negative force: Efficient vulnerability root-cause
analysis through reinforcement learning on counterexamples,” in 33rd
USENIX Security Symposium, USENIX Security 2024, Philadelphia,
PA, USA, August 14-16, 2024, D. Balzarotti and W. Xu, Eds.
USENIX Association, 2024.

W. Guo, D. Mu, X. Xing, M. Du, and D. Song, “DEEPVSA: facili-
tating value-set analysis with deep learning for postmortem program
analysis,” in 28th USENIX Security Symposium, USENIX Security
2019, Santa Clara, CA, USA, August 14-16, 2019, N. Heninger and
P. Traynor, Eds. USENIX Association, 2019, pp. 1787-1804.

Z. Lin, X. Zhang, and D. Xu, “Automatic reverse engineering of
data structures from binary execution,” in Proceedings of the Network
and Distributed System Security Symposium, NDSS 2010, San Diego,
California, USA, 28th February - 3rd March 2010. The Internet
Society, 2010.

M. Noonan, A. Loginov, and D. Cok, “Polymorphic type inference for
machine code,” in Proceedings of the 37th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, 2016,
pp. 27-41.

H. Touvron, T. Lavril, G. Izacard, X. Martinet, M. Lachaux,
T. Lacroix, B. Roziere, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez,
A. Joulin, E. Grave, and G. Lample, “Llama: Open and efficient
foundation language models,” CoRR, vol. abs/2302.13971, 2023.

D. Nam, A. Macvean, V. J. Hellendoorn, B. Vasilescu, and B. A.
Myers, “Using an LLM to help with code understanding,” in Pro-
ceedings of the 46th IEEE/ACM International Conference on Software
Engineering, ICSE 2024, Lisbon, Portugal, April 14-20, 2024. ACM,
2024, pp. 97:1-97:13.

J. T. Liang, C. Yang, and B. A. Myers, “A large-scale survey on the
usability of ai programming assistants: Successes and challenges,”
2024 IEEE/ACM 46th International Conference on Software Engi-
neering (ICSE), pp. 616-628, 2023.

L. Zhong and Z. Wang, “Can Ilm replace stack overflow? a study on
robustness and reliability of large language model code generation,”
in AAAI Conference on Artificial Intelligence, 2023.

G. Sandoval, H. A. Pearce, T. Nys, R. Karri, S. Garg, and B. Dolan-
Gavitt, “Lost at c: A user study on the security implications of large
language model code assistants,” in USENIX Security Symposium,
2022.

[41] C. Xia and L. Zhang, “Less training, more repairing please: revisiting
automated program repair via zero-shot learning,” Proceedings of
the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2022.

[42] H. Joshi, J. Cambronero, S. Gulwani, V. Le, 1. Radicek, and G. Ver-
bruggen, “Repair is nearly generation: Multilingual program repair
with 1lms,” Aug 2022.

[43] Asmita, Y. Oliinyk, M. Scott, R. Tsang, C. Fang, and H. Homayoun,
“Fuzzing busybox: Leveraging 1lm and crash reuse for embedded bug
unearthing,” ArXiv, vol. abs/2403.03897, 2024.

[44] Y. Deng, C. Xia, H. Peng, C. Yang, and L. Zhang, “Large language
models are zero-shot fuzzers: Fuzzing deep-learning libraries via large
language models,” Dec 2022.

[45] Y. Chen, R. Wang, H. Jiang, S. Shi, and R.-L. Xu, “Exploring the use
of large language models for reference-free text quality evaluation:
A preliminary empirical study,” ArXiv, vol. abs/2304.00723, 2023.

Appendix A.
Downstream Security Analysis Tasks

A.1. Decompiled Code Optimization

A common downstream security analysis task supported
by TyPEFORGE is optimizing decompiled code to enhance
its readability and accuracy. Widely used decompilers, such
as IDA Pro [14], Ghidra [13], and Binary Ninja [25], often
struggle to recover composite data types, particularly user-
defined composite data types. This limitation results in
decompiled code with poor readability, which negatively
impacts the efficiency and accuracy of reverse engineers’
analyses.

In recent years, research efforts such as DeGPT [6] have
aimed to enhance the readability of decompiled code. How-
ever, these approaches typically focus on renaming variables
and functions or adding comments, without addressing the
recovery of composite data types. Consequently, their effec-
tiveness in optimizing decompiled output remains limited.
To illustrate this, we use a stripped binary from real-world
ASUS router firmware as an example. Figure 10(a) shows
the results of applying the state-of-the-art optimization ap-
proach, DeGPT, to Ghidra’s decompiled code for a network
preprocessing function in this program, without recovering
composite data types. While variable and function names
are partially recovered and some comments are added, the
code’s syntax and semantics remain unclear. It still contains
numerous explicit type casts and complex memory access
expressions, such as x(long x)(network_context + 0x140)
and (ulong)event_index * 8, making it challenging for re-
verse engineers to fully understand the code’s purpose.

Next, we use TYPEFORGE to recover the composite data
types in this program, and then reprocess the decompiled
code with the recovered types as input for DeGPT’s opti-
mization, as shown in Figure 10(b). As illustrated, the read-
ability of the type-recovered decompiled code has improved
significantly compared to (a). Many explicit type casts and
complex memory access expressions have been correctly
translated into structure member accesses, with member
names also successfully recovered, resulting in clearer over-
all code semantics. Additionally, certain complex code struc-
tures in (a) are now optimized. For example, the complex

1 undefined8

2 network_register_fdevents(long network_context) {

3

4 for (event_index = 0; event_index < *(uint *)(network_context + ©x148);
5 event_index++) {

6

7 current_fd_event = *(long *)(*(long *)(network_context + 0x149)

8 + (ulong)event_index * 8);

9

10

11 if (*(int *)(current_fd_event + 0x70) != -1) {

12

13 registration_result = fdevent_register(

14 *(undefined8 *)(network_context + 0x18),
15 *(undefined4 *)(current_fd_event + 0x70),
16 FUN_00118948, current_fd_event);

17

18 *(undefined8 *)(current_fd_event + 0x78) = registration_result;
19

20 fdevent_fdnode_event_set(*(undefined8 *)(network_context + 0x18),
21 *(undefined8 *)(current_fd_event + 0x78), 1);
22

2) @

24 undefineds
25 network_register_fdevents(struct_3ffd *network_data) {

27 for (uint index = @; index < network_data->connection_count;
28 index++) {

30 struct_2442 *current_struct = network_data->connection_array[index];
31

32

33 if (current_struct->fd != -1) {

34

35 current_struct->event_node = fdevent_register(

36 network_data->event_context,
37 current_struct->fd,

38 FUN_00118948, current_struct);
39

40 fdevent_fdnode_event_set(network_data->event_context,

41 current_struct->event_node, 1);
42

43} (b)

Figure 10: Comparison of DeGPT-optimized decompiled
code before and after type recovery with TYPEFORGE.

memory access statement on lines 7-8 is simplified into
the more intuitive array access of structure member on line
30, represented as network_data->connection_array[index].
The redundant assignment statements on lines 13-18 in (a)
are also streamlined into a clearer single statement in (b),
as shown on line 35.

In summary, the composite data types recovered by
TyPEFORGE significantly enhance the readability of decom-
piled code, thereby improving the efficiency of reverse
engineers in their analyses.

A.2. Vulnerability Detection

Another downstream task supported by TYPEFORGE is
static vulnerability detection. While numerous static vul-
nerability detection tools for source code have achieved
high accuracy, their methods cannot be applied to stripped
binaries or decompiled code due to the lack of compos-
ite data type information. Currently, there are also some
static vulnerability detection approaches targeting stripped
binaries [2], [3], [4]; however, these approaches typically
operate at the instruction level and require extensive mod-
eling of program memory, which significantly impacts their
execution efficiency.

Figure 11 shows a recent real-world vulnerability from
the same ASUS router firmware as an example. To preserve
the anonymity of this submission, we do not include the full

element = array_get_element(a2[76], "Cookie");
if (element) {
v20 = buffer_init();
buffer_copy_string_len(v20,
*%(_DWORD **)(element + 32),
*(_DWORD *)(*(_DWORD *)(element + 32) + 4));
buffer_urldecode_path(v20);
memset(vi4, 0, sizeof(vid));
strncpy(v1l4, *(const char **)v20, *(_DWORD *)(v20 + 4));
buffer_free(v20);

ONOUV A WN R

BPRrREO
Wk e
-

(@)

14
15 element = array_ge
16 if (element)

17 v20 = buffer{ init(); \
18 buffer_copy_| trir@7 en?&vZ@»ptr‘_field_@xB,
19 element->ptr_field_0x20->ptr_field_oxe,

20 element->ptr_field_ox20->data_field_0x4);
21 buffer_urldecode_path(v20);

22 memset(vi4, 0, dizeof(vid));

23 strncpy(vil4, v20->ptr_field_0x0, v20->data_field_ox4¥5

24 buffer_frde(v20);
25

2% } (b)

ement(a2[76], "Cookie");

Figure 11: Decompiled code of a real-world vulnerability
before and after type recovery with TYPEFORGE.

CVE identifier. Notably, this vulnerability has already been
reported to the vendor and patched, ensuring no issues are
violating academic ethics.

Figure 11(a) shows the decompiled code of this
vulnerability ~without type recovery. The function
array_get_element stores user input from the “Cookie”
into the member of a structure variable element (line
2). These members propagate as the program executes
and eventually trigger a buffer overflow vulnerability in
strncpy (line 10). However, when the composite data types
in the stripped binary are not recovered, static analysis
tools cannot determine that variable element is a structure
pointer or understand the meaning of the memory access
expressions. As a result, existing methods for analyzing
stripped binaries often rely on complex memory modeling,
significantly increasing performance overhead.

If the composite data types in this program are recov-
ered, as shown in Figure 11(b), static analysis tools can eas-
ily trace the propagation path of the dangerous data. Specif-
ically, the function array_get_element stores the content
and length of the dangerous input “Cookie” into the struc-
ture members element->ptr_field_0x20->ptr_field_ox@
(red arrow) and element->ptr_field_0x20->data_field_ox4
(green arrow), respectively. Subsequently, the func-
tion buffer_copy_string_len propagates the content and
length to the structure members v20->ptr_field_oxe
and v20->data_field_ox4. At the strncpy call on line
23, the buffer overflow vulnerability can be detected
if it is determined that both v20->ptr_field_exe and
v20->data_field_ox4 are attacker-controlled.

In summary, the composite data types recovered by
TypPEFORGE greatly enhance the capabilities of existing static
analysis tools for stripped binaries. By eliminating the need
for overly complex memory modeling, these tools can adopt
static analysis techniques initially designed for source code,
thereby significantly improving their efficiency.

Appendix B.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

B.1. Summary

This paper focuses on recovering composite data types in
stripped binaries. The authors propose a new graph structure
to capture type information and synthesize from it possible
type declarations. Then, they use an LLM-assisted double-
elimination framework to select the best-fit declaration from
the candidates according to the readability of the resulting
decompiled code.

B.2. Scientific Contributions

o Creates a New Tool to Enable Future Science

o Addresses a Long-Known Issue

o Provides a Valuable Step Forward in an Established
Field

B.3. Reasons for Acceptance

1) This paper creates a new tool to enable future science.
The authors make their tool and the evaluation artifacts
available to other researchers, allowing for independent
confirmation and supporting future research.

2) This paper addresses a long-known issue. Binary code
type inference has been studied for over 20 years (e.g.,
ACM CSUR 2016 survey from Caballero and Lin)
and has numerous applications to software and systems
security.

3) This paper provides a valuable step forward in an estab-
lished field. While recent literature has improved infer-
ence accuracy with primitive types, this work advances
the state of the art with composite types, proposing
a graph abstraction that is new and may enable other
downstream uses for the captured information.

B.4. Noteworthy Concerns

Compiler optimizations can negatively impact the ac-
curacy of the method, leaving to future research the open
question of whether—and how—their undesired effects can
be mitigated in the current design.

